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A qualitative model of the seismic center is proposed in which theoretical "seis- 

mograms" resemble observed seismograms with alternating pulse sequence, even in the 

absence of random signals distortions. In this model the shift development is 

intermittent leading to a sawtooth shear fracture, so that to each step of the 

seismogram cooresponds one jump in time and one rectilinear section of the fracture. 

The kinematic definition of shifts as shear dislocation fractures is used here; in 

comparison with the force method it makes possible a considerable simplification 

of mathematical operations, and attainment of more effective results. 

The mechanics of the seismic center based on the representation of the center by a 

brittle shear fracture was dealt with in /l/, where the history of earthquake studies was 

also presented together with a comprehensive survey of the present state of the theory of 

tectonic earthquakes. 
The assumption that a seismogram in which random distortions of the input signal by all 

kinds of inhomogeneities, interfaces, etc. have been "washed off" has the form of a smoothly 

rising curve corresponding to the monotonic development of a single shear crack in one plane 

/l/ is inadequate. 
The qualitative model of the intermittent development of shear is proposed here for the 

plane case. 

1. Description of the earthquake model. Let us assume that the process of 

breakdown in the seismic center represents the dynamic growth of the edge of some discontinu- 

ity surface of the shear components of displacement. Let us also assume that: a) the 

fracture surface consists of various small flat surfaces as a whole oriented along some main 

direction, and b) the earthquake is the result of an intermittent (jump-like) growth of the 
surface of that fracture, with interruptions at the instant of transition of sliding on one 

small surface to another. 

It is reasonable to assume thatthemain direction coincides with the plane of action of 

maximum shear stresses at the seismic center. 

We make some further assumptions which do not have any fundamental importance but con- 

siderably simplify mathematical operations. 

lo. The ground outside the surface of fracture is an infinite homogeneous perfectly 

elastic space. 

2O. The physical perturbation field is plane, i.e. independent of one of the space 
coordinates, and the fracture has the form of various segments of straight lines, with its 

edge appearing in a plane drawing as a point. 

3O. The magnitude and direction of the vector of the displacement jump is specified 

along the fracture line, i.e. the kinematic definition of fracture applies. It is assumed 

that only the component of the displacement vector whose direction coincides with the motion 
of fracture ends becomes discontinuous, while the magnitude of the jump remains constant 

throughout the process. (It is shown below that the pattern of radiation direction in the 

case of a single rectilinear dislocation of this type is the same as that of the radiation 

direction in the case of a rectilinear crack of transverse shear in /2/J. 

4'. The propagation velocity of the step-like fracture over individual rectlinear sec- 

tions is constant and does not exceed the limit propagation velocity of the dislocation frac- 
ture. (The limit propagation velocity of such fracture represents a certain fraction of the 
velocity of transverse waves, which depends only on the Poisson's ratio and is determined by 
properties of the displacement near the fracture edge). 

5O. The initial length of the fracture is zero. 

2. Construction of solution. We begin by considering the following auxilliary 
problem. Let us assume that at the initial instant of time t = 0 a transverse dislocation 
fracture with a constant displacement jump b begins to propagate at constant velocity v from 
the coordinate origin in the positive direction of the z-axis. We denote by u, and uy the 
components of the displacement vector along the z- and y-axes, respectively, andby (T,,, ouu 
and u,!, the stress tensor components. 
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The boundary conditions of this problem (with allowance for its skew-symmetry) are of 
the form 

y ~~ II, 0 < s ( L?, U, ‘i, 0. CTsry 0, y 0.x < 0, 1 ,‘ vi, u, 0. GY8 = 0 
(2.11 

At 1< 0 the medium was at rest. In the case of the plane problem considered here equations 
of the dynamic elasticity theory are of the form 

where the superscripts p and s denote the longitudinal and transverse displacement compon- 
ents, respectively, and cl, and cS are velocities of longitudinal and transverse waves, 
respectively with (cP> c.). The longitudinal and transverse waves are subsequently called 
the P-and S-waves, respectively. 

The auxilliary problem formulated above belongs to the class of self-similar problems of 
the elasticity theory with an (0,O) self-similarity index. We use the general method for 
solving such problems /3/ based on the representation of solution of the wave equation in 
terms of analytic functions of a complex variable, since it enables us to formulate directly 
the self-similar problem as some Riemann-Hilbert problem for the half-plane (in the simplest 
case we obtain either the Dirichlet or a mixed problem). 

For problems that are skew-swetric about the x-axis the general solution in terms of 
the single analytic function Iv dependent on the complex variables zP or z, is of the form 

U, = Re IV, (zP) i- U, (a,)l, 1~" x Re ]V, (zP) i- V, (z&)1 (2.3) 

where k is the shear modulus. 
The boundary value problem (2.1), (2.2) can be reduced with the use of formulas (2.3) and 

(2.4) to the following Dirichlet 

Im z -: 0, Re z > V1, 

whose solution is of the form 

By substituting (2.6) into (2.5) 

problem: 

Re &' (z) :-- Ii, b, Im z : 0. He z < Vet’, Re W (z) = 0 (2.5) 

II’ (1) = - -$ In (1-0~) (2.61 

and (2.3) we obtain for the displacements the following formulas: 
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Functions FIP,F~,F~P and F; represent fundamental solutions which, by the principle of 

superposition, enable us to construct readily a solution of the problem for any arbitrary 

curvilinear dislocation fracture propagating at an arbitrary variable velocity u(t) and with 

a displacement jump defined by an arbitrary function of time and coordinates. For the purpose 

of this investigation it is sufficient to solve the problem of intermittent propagation of 

the sawtooth dislocation fracture using the model defined in Sect.1 by the assumptions l"-50. 

Let at the instant of time t = to a transverse dislocation fracture with constant dis- 

placement jump bl begin to propagate at constant velocity q from point (xO,yo) along a line 

at angle a, to the x-axis. At some instant t= t, the fracture tip stops, then at instant 

t=t, its motion resumes along a line at angle a, to the x-axis at some velocity v, with 

displacement jump b,; this motion continues up to the instant of time t=t, when the 

second interruption of fracture propagation takes place. At any of the subsequentinstantsof 

time t = tab, the fracture tip resumes its motion along a line at angle ak to the x-axis 

at some constant velocityvk+land with displacement jump bb+l;then, at instant of time t = &+I 

its propagation ceases. 
The solution of this problem consists of the superposition of the previously derived 

fundamental solution, with the obvious substitution of arguments 

where 
x--f Zk, y -+ &., t 3 t - tk, V -+ Vk, b-t bk 

gzk = - (x - xk) sin t+ + (y - yk) ces ck * &k-1 = - (x -zk) sin ak_l + (y - yk) cos C&_I 

For a finite number n of jumps this solution can be represented in the following analy- 

tic form: 
n--l n--l 

u= 3 F&k, !? Sk, (2.8) 
k=O 

t - h.kr Vk+l, bk+d - kzo” (%k+l, &k+lr t - t%b+lr vk+lr bk+l) 

where the superscript and subscript at displacement u are the same as in the fundamental 

solution F defined by formulas (2.7); these indices have been omitted here for simplicity. 

Note that the case of arbitrary specification of displacement jump, fracture trajectory and 

its propagation velocity can be from (2.8) by passing in it to the limit n--t 00, tk,, - t,, -+ 0, 
vk+l - vk -+ 0, bk+l - bk -f 0, and ak+l - ak + 0. 

Similar problems in force formulation, i.e. by specifying the law of interaction between 

opposite fracture edges are not amenable to effective investigation. 

3. Analysis of solution and numerical computations. For seismological applic- 

ations of greatest interest is the asymptotic behavior of solutions at considerable distances 

from the perturbation source at the first arrival of P-and S-waves at the observation point 

(precursor asymptotics). This solution is derived from the fundamental solution (2.7) by 

passing to the limit nP+- 1 and n,-+ 1. The asymptotic formulas for the magnitude of the 

displacement vector in P- and S-waves we have 

For 0< q<Vzn and n< 'p<'/~ s the direction of the displacement vector up asymptot- 

ically approaches the direction of the radius vector drawn from the source to the observation 

point, while for '/an<cp<n and '/,n<cp<2n it approaches the vector line in the op- 

posite direction. For - 'l&n < 'p < V4n and '14n < 'p < S/4n the direction of the shift vector 

us asymptotically approaches that radius-vector, and for 'lrn< 'p <3i4n and =l,n < 'p < '1. n 
it approaches the vector line in the opposite direction. The plane in-which the respective 
displacement vector vanishes is called nodal. One of the nodal planes for P-waves evidently 
coincides with the direction of fracture propagation and the second is normal to it, for S- 

waves the nodal planes are at &*/A angles to the direction of fracture propagation. The 

dependence of displacement vectors 1 up land) d 1 on angle cpis called the radiation direction 
diagram. It can be used for determining the directions of vectors up and d, taking into 
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account the indicated sign rule. 

Fig.1 Fig.2 

Radiation direction diagrams for P- and S-waves are shown in Fig.1 for two different frac- 
ture propagation velocities (curves 1 and 2 correspond to velocities u equal 0.6~~ and O.'J,c,). 
These curves, calculated by formulas (3.1), show the substantial dependence of radiation in- 
tensity and direction on fracture propagation velocity. 

For low velocities of discontinuity propagation in P-waves, the radiation maxima are 
directed along the bisectrices, and for the S-waves along the fracture propagation direction 
and along the normal to it. As the fracture propagation velocity increases, the importance 
of the denominator in formulas (3.1) also increases, which leads to the asymmetry of the radi- 

ation direction relative to the plane normal to discontinuities in the P- and S-waves, as 
well as the asymmetry of that direction relative to the bisecting planes in P-waves. Thus 
for u = 0.9~~ the two highest maxima occur along lines at angles +36" to the r-axis, while 
the two lowest maxima are along the line at +128” angle to the r-axis. As the fracture 

velocity approaches c,, a considerable increase of the radiation maximum occurs in S-waves 
in the direction of propagation of the fracture end; simultaneously the maxima undergo an 

angular displacement. Thus for v = 0.9 c, such maxima occur along lines at &75" angles to the 
5 -axis. It should be pointed out that the radiation maximum in S-waves is by one order 

/of magnitude/ higher than in P-daves. Owing to this the basic part of energy radiates along 

the fracture plane, while the previously indicated asymmetry of radiation direction makes it 

possible to estimate the fracture propagation velocity and can, also, be used for a unique 

selection of the fracture plane. 

IJse of the fundamental solution asymptotics together with the diagram of direction radi- 

ation enables us to determine by superposition the dependence of the displacement on time (the 

theoretical seismogram) at any observation point. One of such seismograms for P-waves ap- 
pears in Fig.2 for the case of intermittent propagation of a rectilinear fracture from the 

coordinate origin in the positive direction of the .r-axis. 
The curve was determined for the case of six jumps and the following values of parameters: 

The curve maxima in Fig.2 correspond to the instants of arrival of waves arising at stop- 

pages of the fracture tip, and the minima relate to the instants of arrival of waves generated 

at the resumption of propagation of the dislocation fracture tip. Thus the intermittentmotion 

of the fracture tip, i.e. when the fracture tip propagation velocity vanishes for some time 
intervals, produces the characteristic sawtooth curve. When the fracture propagation velocity 

is smooth, the pattern of displacements in P-and S-waves is, obviously, of the form of a 
smoothly varying curve; the case in which there are time intervals in which the fracture prop- 
agation velocity is zero is characterized byasawtooth curve of the type shown in Fig.2. 

The alternating sequence of pulses, a characteristic of the majority of recorded seis- 

mograms, is difficult to explain if a rectilinear fracture propagation is assumed. However 

theoretical seismograms with sequenciesof alternating pulses are, as a rule, obtained in the 
case of intermittent curvilinear fracture propagation. To explain this feature we shall, 

first, consider the case of a single change of the propagation direction from the initial to 

one at angle cL to it. We assume the observation point Q at which the P-pulse is recorded 

to be at considerable distance from the fracture tip, and to lie on a line at angle a/ 2to the 

.r -axis. For definiteness we assume that O<a<n/2. Then, as can be seen from the 
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direction diagrams in Fig.1, first, a positive pulse reaches point Q. After the fracture 

had turned by an angle a, negative pulses begin 

us's 
to arrive at the observation point Q, because the 

radiation direction diagram turns simultaneously 

Y aor 
b 

1---b 

with the fracture by the angle a. 
a 

.a: 
With several changes of direction of the dis- 

az 
location fracture about some main propagation line 

(as defined in the general model proposed in Sect.11, 

theoretical seismograms with alternate sign segu- 

0 
aa ences of pulses are obtained in which a single step 

t of the seismogram corresponds to each rectilinear 

section of fracture. 

As an example, the case of a stepwise fracture 

with six rectilinear sections shown in Fig.3,a was 

calculated. The physical parameters used in this 

Fig.3 case were exactly the same as in the previously 

considered example of rectilinear intermittent fra- 

ture propagation (see Fig.2 and formulas (3.2)), 

and the direction changes of the fracture were specified as follows: a, = IO”, 
20", a3 = 60", a4 = 15" and a! = 65". 

a, = 70", a, = 

The obtained seismogram in p-waves shown in Fig_3b, re- 

sembles actual seismograms. 
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